skip to main content


Search for: All records

Creators/Authors contains: "Nelson, Nicholas P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    In a recent study, we reported beam quality correction factors,fQ, in carbon ion beams using Monte Carlo (MC) methods for a cylindrical and a parallel‐plate ionization chamber (IC). A non‐negligible perturbation effect was observed; however, the magnitude of the perturbation correction due to the specific IC subcomponents was not included. Furthermore, the stopping power data presented in the International Commission on Radiation Units and Measurements (ICRU) report 73 were used, whereas the latest stopping power data have been reported in the ICRU report 90.

    Purpose

    The aim of this study was to extend our previous work by computingfQcorrection factors using the ICRU 90 stopping power data and by reporting IC‐specific perturbation correction factors. Possible energy or linear energy transfer (LET) dependence of thefQcorrection factor was investigated by simulating both pristine beams and spread‐out Bragg peaks (SOBPs).

    Methods

    The TOol for PArticle Simulation (TOPAS)/GEANT4 MC code was used in this study. A 30 × 30 × 50 cm3water phantom was simulated with a uniform 10 × 10 cm2parallel beam incident on the surface. A Farmer‐type cylindrical IC (Exradin A12) and two parallel‐plate ICs (Exradin P11 and A11) were simulated in TOPAS using the manufacturer‐provided geometrical drawings. ThefQcorrection factor was calculated in pristine carbon ion beams in the 150–450 MeV/u energy range at 2 cm depth and in the middle of the flat region of four SOBPs. ThekQcorrection factor was calculated by simulating thefQocorrection factor in a60Co beam at 5 cm depth. The perturbation correction factors due to the presence of the individual IC subcomponents, such as the displacement effect in the air cavity, collecting electrode, chamber wall, and chamber stem, were calculated at 2 cm depth for monoenergetic beams only. Additionally, the mean dose‐averaged and track‐averaged LET was calculated at the depths at which thefQwas calculated.

    Results

    The ICRU 90fQcorrection factors were reported. Thepdiscorrection factor was found to be significant for the cylindrical IC with magnitudes up to 1.70%. The individual perturbation corrections for the parallel‐plate ICs were <1.0% except for the A11pcelcorrection at the lowest energy. ThefQcorrection for the P11 IC exhibited an energy dependence of >1.00% and displayed differences up to 0.87% between pristine beams and SOBPs. Conversely, thefQfor A11 and A12 displayed a minimal energy dependence of <0.50%. The energy dependence was found to manifest in the LET dependence for the P11 IC. A statistically significant LET dependence was found only for the P11 IC in pristine beams only with a magnitude of <1.10%.

    Conclusions

    The perturbation andkQcorrection factor should be calculated for the specific IC to be used in carbon ion beam reference dosimetry as a function of beam quality.

     
    more » « less
  2. Abstract Purpose

    The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy‐layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beamline to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods.

    Methods

    GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA‐dedicated nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID‐collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume‐averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA universal and dedicated nozzles.

    Results

    Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1‐mm gamma criterion with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in‐depth profiles examined using a 3%/2‐mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a trade‐off between enhancing the valley‐to‐peak ratio of the GRID delivery and the dose‐volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied.

    Conclusions

    The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS‐collimated GRID profiles.

     
    more » « less